HBP: A Novel Technique for Dynamic Optimization of the Feed-Forward Neural Network Configuration
نویسندگان
چکیده
The novel Hessian-based pruning (HBP) technique to optimize the feed-forward (FF) neural network (NN) configuration in a dynamic manner is proposed. It is then used to optimize the extant NNC (Neural Network Controller) as the verification exercise. The NNC is designed for dynamic buffer tuning to eliminate buffer overflow at the user/server level. The HBP optimization process is also dynamic and operates as a renewal process within the service life expectancy of the target FF neural network. Every optimization renewal cycle works with the original NN configuration. In the cycle all the insignificant NN connections are marked and then skipped in the subsequent operation before the next optimization cycle starts. The marking and skipping operations together characterize the dynamic virtual pruning nature of the HBP. The interim optimized NN configuration produced by every HBP cycle is different, as the response to the current system dynamics. The verification results with the NNC indicate that the HBP technique is indeed effective because all the interim optimized/pruned NNC versions incessantly and consistently yield the same convergence precision to the original NNC predecessor, and with a shorter control cycle time.
منابع مشابه
HBP: an optimization technique to shorten the control cycle time of the Neural Network Controller that provides dynamic buffer tuning to eliminate overflow at user level
The NNC (Neural Network Controller) automatically tunes the buffer SIze at the user/server level to eliminate any chance of overflow in the client/server interaction over a TCP logical channel. Together with the buffer tuning operations at the system/router level (e.g. the AQM (Active Queue Management) activities) they form a unified solution. The power and stability of the NNC was verified ove...
متن کاملSTRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...
متن کاملModeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network
Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...
متن کاملSignal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).
In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...
متن کاملFeed Forward Artificial Neural Network Model to Estimate the TPH Removal Efficiency in Soil Washing Process
Background & Aims of the Study: A feed forward artificial neural network (FFANN) was developed to predict the efficiency of total petroleum hydrocarbon (TPH) removal from a contaminated soil, using soil washing process with Tween 80. The main objective of this study was to assess the performance of developed FFANN model for the estimation of TPH removal. Mater...
متن کامل